Mutagenesis of bacteriophage T7 in vitro by incorporation of O6-methylguanine during DNA synthesis.

نویسندگان

  • L A Dodson
  • R S Foote
  • S Mitra
  • W E Masker
چکیده

An in vitro system in which bacteriophage T7 DNA is replicated and efficiently packaged into procapsids to form viable phage has been used to examine mutagenesis. The fidelity of replication was assayed both by measuring reversion of an amber mutation in an essential gene and by generation of temperature-sensitive mutants among the phage produced in vitro. Under standard reaction conditions, the fidelity of DNA replication is about equal to that normally found in vivo. However, when O6-methyldeoxyguanosine triphosphate is included in the reaction, O6-methylguanine is incorporated into newly synthesized DNA and the mutation frequencies increase 10- to 70-fold over the control. These experiments demonstrate in vitro mutagenesis with the T7 DNA replication-packaging system and provide more direct evidence for the premutagenic role of O6-methylguanine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase

O(6)-Methylguanine (O(6)-meG) is a major mutagenic, carcinogenic and cytotoxic DNA adduct produced by various endogenous and exogenous methylating agents. We report the results of transcription past a site-specifically modified O(6)-meG DNA template by bacteriophage T7 RNA polymerase and human RNA polymerase II. These data show that O(6)-meG partially blocks T7 RNA polymerase and human RNA poly...

متن کامل

Base-pairing properties of O6-methylguanine in template DNA during in vitro DNA replication.

The kinetics of incorporation of deoxynucleotide precursors directed by the promutagenic base, O6-methylguanine (m6Gua), was analyzed during in vitro replication of m6Gua-containing synthetic polydeoxynucleotides by T4 and T5 phage DNA polymerases and Escherichia coli DNA polymerase I. When poly(dT,m6dG) and poly(dC,m6dG) with covalently attached primers were replicated, O6-methylguanine paired...

متن کامل

Reduction of O6-alkylguanine-DNA alkyltransferase activity in HeLa cells treated with O6-alkylguanines.

Exposure of HeLa cells to 0.2 mM O6-methylguanine for 4 h or longer led to a 70-80% loss in the activity of the DNA-repair protein, O6-alkylguanine-DNA alkyltransferase. The decline in alkyltransferase activity brought about by O6-methylguanine was reversible on removing the base but at least 48 h were required for complete restoration. This loss of activity could also be brought about by other...

متن کامل

O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?

Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...

متن کامل

Comparative study of mutagenesis by O6-methylguanine in the human Ha-ras oncogene in E. coli and in vitro.

Single residues of O6-methylguanine (O6-meG) were introduced into the first or second position of codon 12 (GGC; positions 12G1 or 12G2, respectively) or the first position of codon 13 (GGT; position 13G1) of the human Ha-ras oncogene in phage M13-based vectors. After transformation of E.coli, higher mutant plaque frequencies (MPF) were observed at 12G1 and 13G1 than at 12G2 if O6-alkylguanine-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 23  شماره 

صفحات  -

تاریخ انتشار 1982